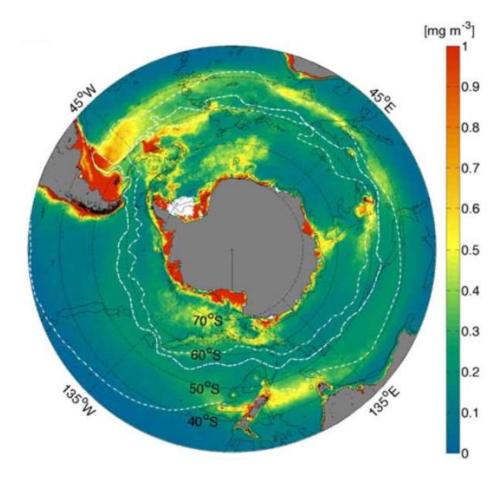
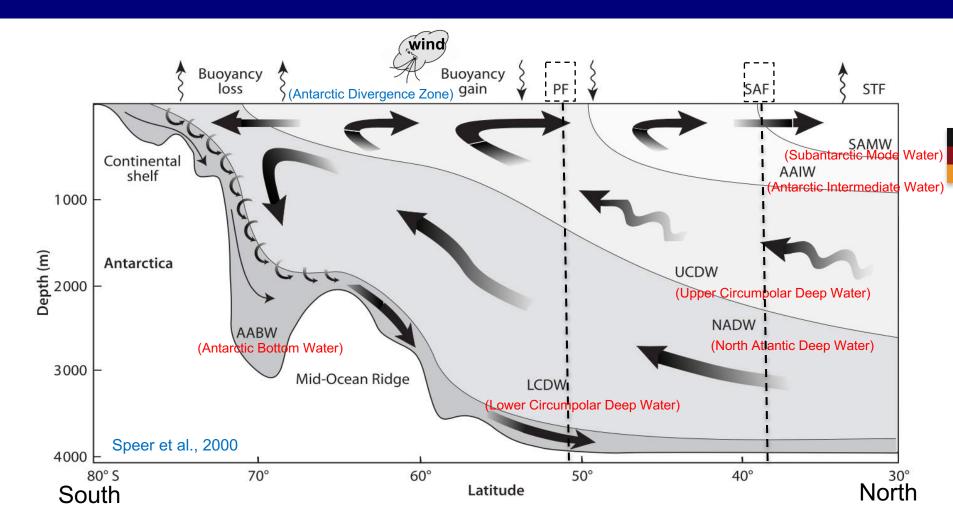


Variability of Nutrients and Carbon in the Antarctic Intermediate Water of the Atlantic sector of the Southern Ocean


Essowè Panassa, J. Magdalena Santana-Casiano, Melchor González-Dávila, Mario Hoppema, Steven M.A.C van Heuven, Christoph Völker, Dieter Wolf-Gladrow, Judith Hauck.

Southern Ocean (SO)

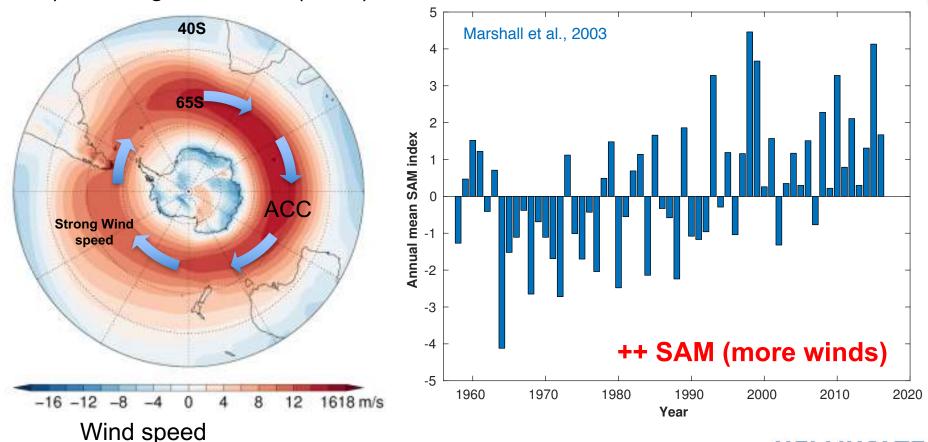


Mean summer chlorophyll

40% of the global ocean
 CO₂ uptake (Khatiwala et al. 2009).

- Climate change : ozone hole & greenhouse gases
- Dominant mode of climate variability : Southern Annular Mode (SAM; Thompson et al.2011).
- Site of water mass formation (subduction/upwelling).

Mean Circulation

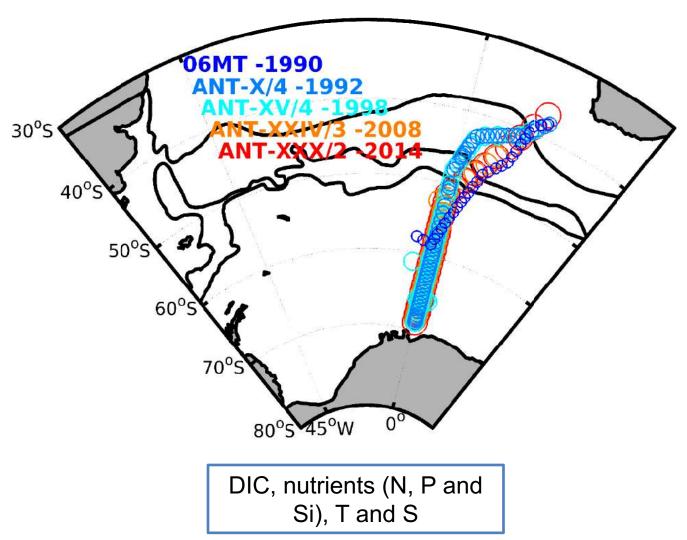


Schematic two-cell meridional overturning circulation in the Southern Ocean.

Variability and Change : atmosphere

Southern Annular Mode (SAM)

SAM Index: pressure or sea surface height anomalies of opposite sign in mid (40°S)- and high-latitudes (65°S).


Variability and Change : ocean

- Freshening (Durack and Wijffels, 2010) and subsurface warming (Gille, 2002, 2008)
- Regional cooling (wind stress) / strong signal in Pacific (England et al., 2014)
- Substantial variability in carbon and nutrient (Pacific, Australian, Indian sectors, Ayers and Strutton, 2013; Pardo et al., 2017; Weddell Gyre, Hoppema et al., 2015)

Variability of nutrients and carbon in AAIW & SAMW of the Atlantic sector?

Data

- Global Ocean
 Data Analysis
 Project,
 GLODAPv2 data.
- Polarstern cruise: ANT XXX/2-2014.

Quality control (QC)

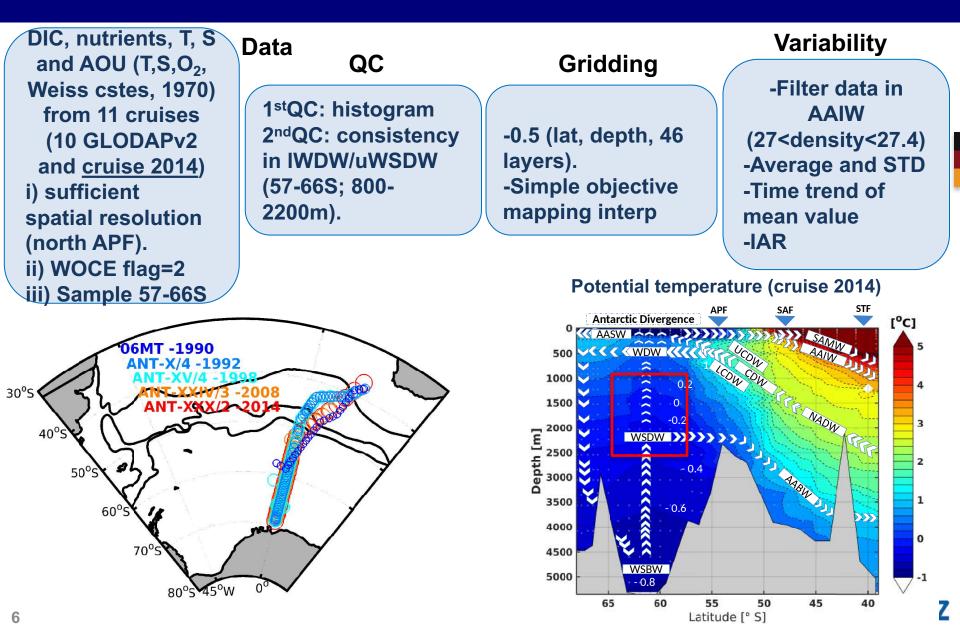
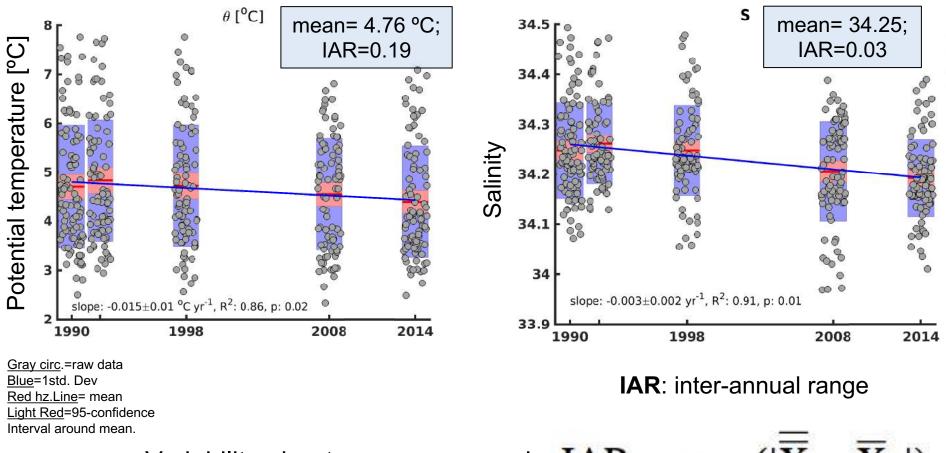
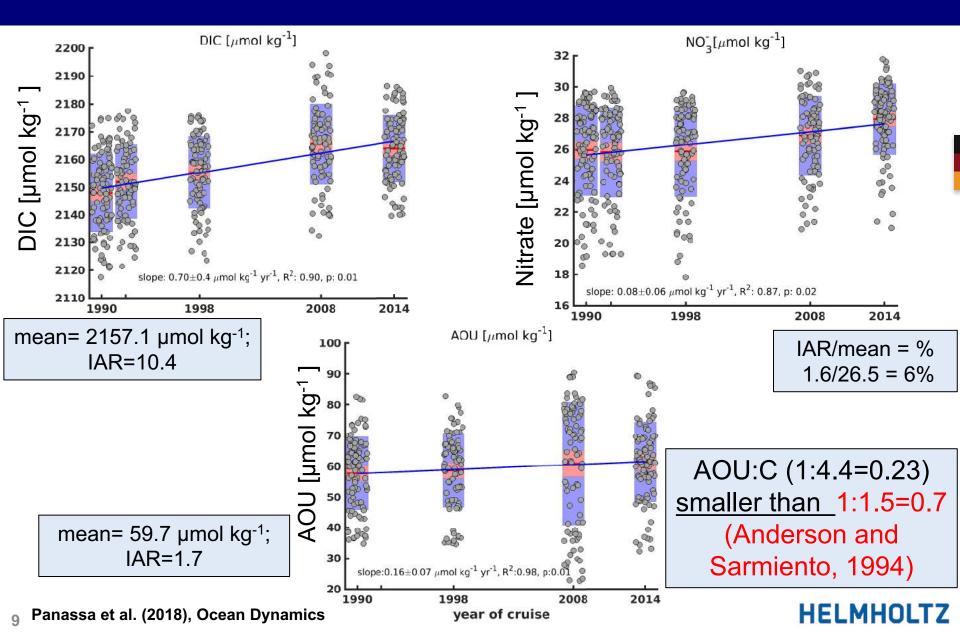


Table 1 Relevant details of the five cruises used in this study: expocode, cruise, research vessel, and adjustments applied to the data and use of Certified Reference Material (CRM, Dickson 2010)


Cruise	Vessel	SAL	DIC	A_T	NO_3^-	PO ₄ ³⁻	H ₄ SiO ₄	O ₂	Reference	CRMs
06MT	Meteor	-0.0004 (0.0)	+1.01 (0.0)	NA	×1.00 (×0.98)	×1.00 (×0.98)	×1.02 (×0.96)	×1.00 (×0.99)	Chipman et al. (1994)	No
ANT-X/4	Polarstern	+0.001 (0.0)	-0.68(0.0)	NA	×1.01 (×0.98)	$\times 1.00 (\times 0.98)$	×1.00 (×0.98)	×1.00 (×1.00)	Hoppema et al. (1995)	No
ANT-XV/4	Polarstern	+0.0007(0.0)	0.17 (-3)	NA	$\times 0.99 (\times 1.0)$	0.99 (×1.0)	0.99 (×1.0)	×0.99 (×1.00)	Hoppema (2004a)	Yes
ANT-XXIV/3	Polarstern	-0.0002 (0.0)	-0.92 (0.0)	+0.29 (-4)	$\times 1.00 (\times 1.0)$	$\times 1.00 (\times 1.0)$	×1.00 (×1.0)	×1.00 (×1.01)	van Heuven et al. (2011)	Yes
ANT-XXX/2	Polarstern	+0.004	-1.36	-1.00	×0.98	×0.98	NA	×0.99	This work	Yes
	06MT ANT-X/4 ANT-XV/4 ANT-XXIV/3	06MT Meteor ANT-X/4 Polarstern ANT-XV/4 Polarstern ANT-XXIV/3 Polarstern	06MT Meteor -0.0004 (0.0) ANT-X/4 Polarstern +0.001 (0.0) ANT-XV/4 Polarstern +0.0007 (0.0)	06MT Meteor -0.0004 (0.0) +1.01 (0.0) ANT-X/4 Polarstern +0.001 (0.0) -0.68(0.0) ANT-XV/4 Polarstern +0.0007 (0.0) 0.17 (-3) ANT-XXIV/3 Polarstern -0.0002 (0.0) -0.92 (0.0)	06MT Meteor -0.0004 (0.0) +1.01 (0.0) NA ANT-X/4 Polarstern +0.001 (0.0) -0.68(0.0) NA ANT-XV/4 Polarstern +0.0007 (0.0) 0.17 (-3) NA ANT-XXIV/3 Polarstern -0.0002 (0.0) -0.92 (0.0) +0.29 (-4)	06MT Meteor -0.0004 (0.0) +1.01 (0.0) NA ×1.00 (×0.98) ANT-X/4 Polarstern +0.001 (0.0) -0.68(0.0) NA ×1.01 (×0.98) ANT-XV/4 Polarstern +0.0007 (0.0) 0.17 (-3) NA ×0.99 (×1.0) ANT-XXIV/3 Polarstern -0.0002 (0.0) -0.92 (0.0) +0.29 (-4) ×1.00 (×1.0)	06MTMeteor $-0.0004 (0.0)$ $+1.01 (0.0)$ NA $\times 1.00 (\times 0.98)$ $\times 1.00 (\times 0.98)$ ANT-X/4Polarstern $+0.001 (0.0)$ $-0.68 (0.0)$ NA $\times 1.01 (\times 0.98)$ $\times 1.00 (\times 0.98)$ ANT-XV/4Polarstern $+0.0007 (0.0)$ $0.17 (-3)$ NA $\times 0.99 (\times 1.0)$ $0.99 (\times 1.0)$ ANT-XXIV/3Polarstern $-0.0002 (0.0)$ $-0.92 (0.0)$ $+0.29 (-4)$ $\times 1.00 (\times 1.0)$ $\times 1.00 (\times 1.0)$	06MTMeteor $-0.0004 (0.0)$ $+1.01 (0.0)$ NA $\times 1.00 (\times 0.98)$ $\times 1.00 (\times 0.98)$ $\times 1.02 (\times 0.96)$ ANT-X/4Polarstern $+0.001 (0.0)$ $-0.68 (0.0)$ NA $\times 1.01 (\times 0.98)$ $\times 1.00 (\times 0.98)$ $\times 1.00 (\times 0.98)$ $\times 1.00 (\times 0.98)$ ANT-XV/4Polarstern $+0.0007 (0.0)$ $0.17 (-3)$ NA $\times 0.99 (\times 1.0)$ $0.99 (\times 1.0)$ $0.99 (\times 1.0)$ ANT-XXIV/3Polarstern $-0.0002 (0.0)$ $-0.92 (0.0)$ $+0.29 (-4)$ $\times 1.00 (\times 1.0)$ $\times 1.00 (\times 1.0)$ $\times 1.00 (\times 1.0)$	06MT Meteor -0.0004 (0.0) +1.01 (0.0) NA ×1.00 (×0.98) ×1.00 (×0.98) ×1.02 (×0.96) ×1.00 (×0.99) ANT-X/4 Polarstern +0.001 (0.0) -0.68(0.0) NA ×1.01 (×0.98) ×1.00 (×0.98) ×1.00 (×0.98) ×1.00 (×0.98) ×1.00 (×0.98) ×1.00 (×0.99) ×1.00 (×0.99) ×1.00 (×0.99) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.00) ×1.00 (×1.01) ×1.00 (×1.0	06MT Meteor -0.0004 (0.0) +1.01 (0.0) NA ×1.00 (×0.98) ×1.00 (×0.98) ×1.02 (×0.96) ×1.00 (×0.99) Chipman et al. (1994) ANT-X/4 Polarstern +0.001 (0.0) -0.68(0.0) NA ×1.01 (×0.98) ×1.00 (×0.98) ×1.00 (×0.98) ×1.00 (×0.99) Chipman et al. (1994) ANT-XV/4 Polarstern +0.0007 (0.0) 0.17 (-3) NA ×0.99 (×1.0) 0.99 (×1.0) 0.99 (×1.0) ×0.99 (×1.00) Hoppema (2004a) ANT-XXIV/3 Polarstern -0.0002 (0.0) -0.92 (0.0) +0.29 (-4) ×1.00 (×1.0) ×1.00 (×1

The data of all cruises were extracted from the GLODAPv2 product, except the 2014 cruise data (ANT-XXX/2). The table shows the adjustments that we applied in this study to obtain consistency on a regional level and the adjustments already applied in the GLODAPv2 dataset in brackets before we checked the local consistency. Both corrections were taken into account as we used the adjusted GLODAPv2 dataset and applied our own adjustments on top. Adjustments applied to the data are additive for S, DIC, and A_T, and multiplicative for the other parameters. NA=not available and x1.00=means no adjustments were applied to the data

 Adjustments without brackets are those applied in the current study, required to obtain consistency in the IWDW/uWSDW

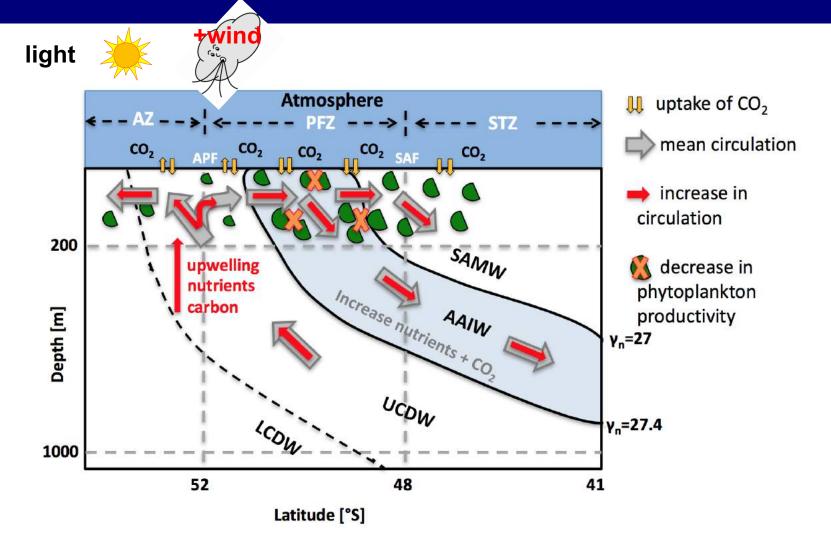

Variability of nutrients and carbon in AAIW

Variability about mean measure by: $IAR = max(|\overline{X} - \overline{X}_k|)$

Panassa et al. (2018), Ocean Dynamics

Variability of nutrients and carbon in AAIW

Variability of nutrients and carbon in AAIW


Observations

ΔDIC_{obs}= 17.5 ± 10 μmol kg⁻¹ in 25 yrs. **DIC changes in core AAIW:** Surface source water (50 – 53 S): (1) theoretical calculation based on increase atmospheric CO₂ $\rightarrow \Delta DIC_{ant} = 19 \mu mol kg^{-1}$ in 25 yrs. (2) <u>ΔDIC₂₀₁₄₋₁₉₉₀ = 22 μmol kg⁻¹</u> in 25 yrs. ΔNO_3 and C:N:P=106:14:1 (de Baar et al. 1997) Separate C_{ant} from other effects: ΔDIC_{Redfield} = 15.3 ± 11.3 μmol kg⁻¹ in 25 yrs **Optimal value**: ΔDIC_{obs} - $\Delta DIC_{Redfield}$ = 17.5 - 15.3 = 2.2; [85% circulation or PP; 15% C_{ant} uptake] ✓ Lower value: ΔDIC_{obs} - $\Delta DIC_{Redfield}$ = 17.5 – 4 = 13.5; [25% circulation or PP; 75% C_{ant} uptake]

10 Panassa et al. (2018), Ocean Dynamics

HELMHULTZ

Summary

DIC changes: 75% (uptake C_{ant}) and 25% (change in circulation).

Take home message

Variability of nutrients and carbon in AAIW of the Atlantic sector (1990-2014)

□ **Positive trend** in DIC, NO₃ and AOU & <u>negative trend</u> in T and S.

□ Support a scenario of an <u>increase in upwelling</u>.

□ <u>Smaller contribution</u> of Remineralization and <u>decrease in net primary Productivity (PP)</u>.

□ <u>DIC changes</u>: 75%~C_{ant} uptake & 25%~circulation/PP.

□ This finding will leads to changes in low latitudes PP.

BSc. Marine Science at University of Kara

- Start: January 2021
- Number of Students : 21 (13 women and 08 men)
- Who can apply? ECOWAS & International students
- Lecturers? National & International

BSc. Marine Science at University of Kara

Pedagogic visit of maritime & meteorological services April 2021, 26, 28, 29 and 30

Thanks for your attention!

